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Abstract-The thermal dispersion theory derived in Part I is here applied to convective heat transfer in an 
externally insulated tube possessing a finite wall thickness. Expressions are derived for the mean axial 
thermal propagation velocity ii* and thermal dispersivity Cc* of the composite system for both laminar 
and turbulent flows. For each, the effect of the nonzero wall thickness is such that o* is always less than 
the average fluid velocity v. In a laminar flow system, &* can either be larger or smaller than the fluid 
diffusivity ar, depending upon the thermal properties of the fluid and wall, as well as upon the magnitude 
of the Peclet number. For turbulent flows, b+ can be either larger or smaller than both ar and the zero wall 

thickness effective thermal dispersivity, SrX, although now it further depends upon the Prandtl nmber. 

1. INTRODUCTION 

CONSIDER the convective-diffusive transport of heat 
through an insulated circular tube in which a unidi- 
rectional laminar or turbulent flow occurs under the 
influence of a uniform pressure gradient. The adia- 
batic, zero normal flux thermal boundary condition 
will be assumed to apply at the outer surface of the 
finite-thickness tube constraining the flow [I; here- 
after referred to as Part I]. Since the tube is insulated 
at its outer, rather than inner surface, heat can be 
transported axially (as well as radially) by the tube 
wall. The wall thickness, R,- Ri, as well as the thermal 
transport properties of the tube (and the fluid) will be 
seen to affect both I? and a*. Figure I shows the 
geometrical configuration of the system. 

2. LAMINAR FLOW 

At the microscale, heat is convected locally with the 
Poiseuille-flow velocity in the fluid domain, and at 
zero velocity within the tube wall :$ 

U(R) = 
1 

21;21-(RIRi)‘], (0 ~ ip < Ri) 
o (Ri < R < R,), (I) 

with P the mean velocity of the fluid. Insofar as their 
respective functional dependences upon cross-sec- 
tional position R are concerned, the pertinent mic- 

__ 
t Address for correspondence : H. Brenner, MIT, Room 

66-562, Cambridge, MA 02139, U.S.A. 
$The corresponding turbulent flow case is discussed in 

Section 3. 
9 Reference to equation numbers in Part I of this series will 

be made henceforth by affixing the prefix I to the appropriate 
equation of that paper ; thus (I-l 1 I) refers to equation (I 1 l) 
of Part I. 

roscale thermophysical properties will be supposed 
given by the expressions 

prc, = const. (0 < R < Ri), 
~(R)c(R) = P,,,c, = const. (Ri f R < R,) 

(2) 

and 

It, = const. (0 < R < R,), 
k(R) = 

k, = const. (Ri < R < R,), (3) 

where subscripts f and w refer to the fluid and wall 
domains, respectively. These data are used in sub- 
sequent subsections to calculate the macroscale ther- 
mophysical coefficients pc*, i?* and L?* appearing in 
the macrotransport equation (I-l 1 I).§ 

2.1. Calculation of ;liF* 

Substitution of (2) into (I-11.5) yields, upon inte- 
gration over R and 4 using the piecewise-continuous 
constancy of pc within the appropriate regions, 

(4) 

FIG. 1. Tube with a finite wall thickness, R,--R,. The no- 
fiw boundary condition apphes at the outer surface, R = RO. 
The domain of interest insofar as the transport of heat is 

concerned corresponds to the region 0 c R < R,. 
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NOMENCLATURE 

field defined by equations (I-64)-(1-66) 
specific heat capacity 
molecular diffusivity 
dispersivity 

velocity deficit 
functions defined in equations (43) and 

(44) 
constants, n = l-6 
thermal conductivity 
eddy thermal conductivity of fluid 

. . 
[“, pn respective convective and molecular 

(i.e. quiescent) contributions to k;” 
F* effective macroscale thermal conductivity 
P pressure 
P? thermal Peclet number, ~R,/E, 

Pro material Peclet number. vR,/D 
Pi Prandtl number 
R radial coordinate in circular cylindrical 

coordinate system 

R,. R. inner. outer radius of the cylinder 

Re* Reynolds number based on V* 
R? Reynolds number, PR,/v 

t time 
U axial velocity of fluid 

u,, centcrlinc velocity of fluid 

i? mean thermal propagation velocity 
P mean fluid velocity 

(‘* 

I 
friction velocity 

axial coordinate in circular cylindrical 
coordinate system. 

Creek symbols 
x molecular thermal diffusivity, k/pc, 
a* thermal dispersivity 

P volumetric specific heat capacity ratio 

i ’ thermal conductivity ratio 
I’ kinematic viscosity of fluid 

5 dimensionless radial position, RiR, 

P density 
/?+ macroscale volumetric specific heat 

capacity 

4 angular coordinate in circular cylindrical 
coordinate system 

(I%. 9,” volume fraction of fluid and wall 
regions. respectively 

(I) correction factor for the thermal 

dispersivity. 

Subscripts 
f fluid region 
W wall region. 

Superscripts 
C convective contribution 
M molecular contribution. 

wherein where we have defined the volumetric specific heat 
capacity ratio, 

= volume and areal fraction of fluid 

(5) 
(9) 

and 4% = I-4,. The functional dependence of 0*/v upon $, and /j is 

displayed generically in Fig. 2, and explicit results for 

2.2. Calculution of U* 
water (/I = 0.94) and a typical oil (/I z 2.23) [2, #A.61 

Substitution of equation (1) together with (2) into 
flowing through standard steel pipes [3] are given in 

(I-1 13) gives, upon performing the requisite inte- 
Table I. Notice that even for large values of 4,. (thin 

grations, 
walls), large differences can exist between ii* and P. 
This is especially true for low heat capacity fluids (e.g. 

u’* = &PrcI- v. gases) flowing in pipes. Thus, for example, in the case 

PC’* 
(6) of air flowing through a steel pipe, [I z 2800. 

The thermal velocity C?* corresponds to the mean 
velocity at which the ‘center of internal energy’ is 

2.3. Calculation of’3 

conveyed axially. This velocity clearly obeys the 
From (I-I l4), (I-l 16) and (I-I l7), the mean con- 

ductive contribution 
inequality 

Alternatively expressed. to the effective thermal dispersivity Cc* may be 
obtained from the expression 

(8) 
FM = &k, +&k, 



Thermal Taylor dispersion in a cylinder-II 4329 

FIG. 2. Average thermal velocity o* relative to average fluid 
velocity P as a function of fluid volume fraction +r for 

various specific-heat capacity ratios p. 

This corresponds to conductivities in parallel. Expre- 

ssed in alternative form, these combined expressions 
may be written as 

-M G! = GlfWM, (12) 

wherein c+ = kr/p,cr, and tuM is the dimensionless 
function 

we will assume subject to a posteriori verification that 
the B-field is of the functional form B = B(R), inde- 

pendent of 4. Consequently, equations (I-64) to 
(I-66) reduce to 

(16) 

g=o at R=R,. (17) 

Use (1) for U(R) in the above, multiply by R, 

integrate, and subsequently use boundary condition 

(17) to eventually obtain 

dB 
p= 
dR 

(R, < R < 4,). 

(18a,b) 

Requisite quadrature of (I- 118) thereby yields 

wherein wc is the nondimensional parameter 

in which 

k de‘ W 
i’=- 

k,. 
(14) 

is the conductivity ratio. Note that c.?’ = 1 when the 
tube wall is absent, corresponding to $J~ = 1. Figure 
3 illustrates the functional dependence explicit in (13). 

In order to calculate the convective contribution 

..’ de,. fJTC 
PC'* 

(15) 

to &* via (I-l 14) (I-l 16) and (I-l 18) one needs first 
to solve for the B-field, defined by (I-64) to (I-66). 
Since the forcing function on the right-hand side of 
(I-64) is a function only of R in the present problem, 

Table I. Thermal velocity 0* for 
water and oil Rowing at mean 
velocity P through steel pipes of 

various sizes 

Nominal 
pipe size 

(in) 

0*/P 

Water Oil 

l/8 0.29 0.15 
I 0.55 0.36 
2 0.68 0.47 

12 0.81 0.64 

x #:+64&(1-$r)B+11(1-&)*B2 
L 

(19) 

-6: {(1-4r)(3-4r)+2In$,] 1 (20) 

Observe that wc = 1 in the absence of the tube wall, 
namely when $r -+ 1, in which case (19) reduces to its 

z 
3 

FIG. 3. Dependence of c?’ on +r for several values of p 
and y. 
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classical Taylor form for material dispersion (where 
r, is replaced by the molecular diffusivity D). Figure 
4 graphically illustrates the functional dependence 
explicit in (20). 

In combination, the effective thermal dispcrsivity 

5r* obtained from (12) and (19) adopts the suggestive 
form 

where 

is the Peclet number based upon fluid properties. For 
a vanishingly thin tube wall, where, c?’ = u(‘ = 1, 

equation (21) reduces to the analog of the comparable 
Taylor-Aris dispersion formula 

for the material Taylor dispersivity 6* of a Brownian 
solute species possessing a molecular diffusivity D 

(with Pe,] = P&/D). 
As shown in Figs. 3 and 4, the functions wM and (tic’ 

respectively span the ranges &’ = uc = 1 at 4r = I to 
os’ + X,/E, and cut + 0 as 4,. + 0. The latter arises in 

the absence of a fluid region, corresponding to the 
case of axial heat conduction through a solid circular 

cylinder. 
Figure 5 displays the dependence of 5*/n, upon 4, 

and Pe for both oil and water systems (each in a steel 

tube). Observe how the dispersion increases as the 
wall thickness increases from zero. Also, note the exist- 
ence of a volume fraction $r for which the dispersion 

is maximized. 

FIG. 4. Dependence of CO’ on C#J~ for several values of fi 
and 7. 

FIG. 5. Effective thermal dispersivity ratio G*/cc? as a function 
of Peclet number. For oil in a commercial steel tube, 
/I = 2.23, ;I = 114, whereas for water in a commercial steel 

tube. /j = 0.94, ;I = 25.7. 

2.4. A limiting mse 

Consider the problem wherein the wall thickness 
goes to zero (4r + I) while at the same time the 
heat capacity ratio fl tends to infinity such that 
the following product remains bounded : 

(I -qb,)[j = O(1) = K. say. We also suppose that 
(I - 4;)y and (1 -4,.)/y are each small compared with 
unity in the limit $r -+ 1 (e.g. 1’ = O(l)). In this limit, 
equations (8). (13) and (20) respectively reduce to 

and 

(24) 

These formulas correspond to the analogous problem 
of a Henry’s law-type partitioning coefficient occur- 
ring during the material dispersion of a solute, such 

as was originally studied by Golay [4], and later elab- 
orated by Aris [5] and Dill and Brenner [6]. 

3. TURBULENT FLOW 

The generic analysis of Part I applies equally well 
to the case of turbulent flow as to laminar flow. Tur- 
bulent Taylor dispersion was originally discussed by 
G. I. Taylor [7] for the case of solute dispersion in 
tubes. In particular, the mean turbulent fluid velocity 
profile U(t) in a circular tube may be expressed as 

U” - U(5) 
= f’(i”)> 

c* 
(27) 

wherein 5 = R/R,. (Strictly, as in equation (5 I ). f’( 0 
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also depends functionally upon the friction velocityy 
Reynolds number Re*, the latter being explicitly 

defined following equation (28).) Here, U0 is the 

centerline velocity of the fluid, v* the so-called friction 
velocity, and f(t) a universal function, termed the 
velocity d&it [8]. Additionally, Reynolds analogy 
[8], which simply states that passive contaminants 

such as heat or matter are transported by turbulent 
motions in much the same way as momentum, will be 
assumed to be true. This assumption leads to the 

conclusion that the eddy thermal conductivity k(i;) of 
the fluid is isotropic and varies with radial distance 

according to the relationship 

in which f’(t) = df’(c)/d<, Pr = v/c+ is the Prandtl 

number, and Re* ‘A’R,v*/v is the Reynolds number 

based on the friction velocity, with v the kinematic 

viscosity of the fluid and kf the thermal conductivity 
of the quiescent fluid. 

It is noteworthy that although we are interested in 

deriving the macroscale thermal convectiveedis- 
persion equations by appropriately averaging the 
comparable microscale ones, equations (27) and (28) 
already represent averages over the characteristic 

length and time scales of the turbulent eddies (instan- 
taneously characterizing the true microscale). Trans- 
port phenomena on such fine scales have already been 
homogenized in producing the apparent steady-state 
microscale velocity and thermal phenomenological 
data U(t) and k(t) appearing in (27) and (28). 

For fully-developed flow, a momentum balance 
yields the following relationship [8] between the axial 
pressure gradient dP/dz in the tube and the friction 
velocity : 

(29) 

Furthermore, the relationship between Re* and the 
Reynolds number, Re = R, v/v, can be expressed as 

Re = !Re,, 
v* 

(30) 

which permits Re to be calculated from Re* via 
knowledge of P/v* (cf. (33)) and U,/v* (cf. (50)). 

3.1. Zero wall thickness 
For the case of a tube with zero wall thickness 

(R, = R,), use of (27) and (28) in equations (I-l 13)) 
(I- 118) yields 

pc* = p&f (31) 

and 

with 

o* = r, (32) 

P= uo-2&I, 

the average fluid velocity, and 

(33) 

at: = 2(Z,+I,)Pr Re*q, (34) 

the effective axial thermal dispersivity for a tube with 
zero wall thickness. The constants I, to I, appearing 

above are respectively defined as 

(35) 

(36) 

(37) 

Consistent with their physical origins in equation (34), 

the constant I2 represents an Aris-like contribution to 
the effective thermal dispersivity and I, a Taylor-like 

contribution. It will subsequently be seen that Z2 << I, 
in general. 

3.2. Finite wall thickness 
Similar to the laminar calculations of Section 2, the 

problem of turbulent thermal dispersion in a circular 
tube having a finite wall thickness will be studied 
here. Analogous to equations (l)-(3), we write the 
turbulent axial velocity distribution as 

U(5) = 
u,-v*f(5) (0 G 5 < 113 

0 (1 < 5 < RJR,), (38) 

and the microscale thermophysical properties as 

P(OC(O = 
pfcr = const. (0 < [ < I), 

pwc, = const. (1 < 5 < RJR,) (39) 

and 

5 

k(t) = 
~- Pr Reek, 
f’(t) 

(0 d r < I), 
(40) 

[k, = const. (1 6 5 d R,/R,). 

Once again, we are to solve equations (I-l 13)-(1-l 18) 
using equations (38)-(40) so as to obtain the macro- 
scale coefficients pC*, o* and Cr*. 

Equation (4) for the effective volumetric heat 

capacity continues to apply in present circumstances. 
Likewise, equation (8) for 0*/P remains applicable, 
wherein, as in equation (33) P = UO - 2v* I,. 

Additionally, the effective thermal dispersivity cI* is 
given by the expression 

cl* 2&GPrRe* -H(r/v*)* Pr2 Re:+(l-_f)y 
-= 
@f h+(l-h)B 

(41) 

or alternatively via (34) as 
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and y is the quiescent thermal conductivity ratio, given 
by (14). Whereas the nondimensional coefficient G 

depends upon 4,-, /I, ,f’(t) and U,,/K+, H depends only 
upon 4r, /I and y. The numerical constants I,, I, and 
I, appearing above are defined by the expressions 

(45) 

One may easily confirm equations (41))(44) in each 
of the limiting cases $r + 0 and I, respectively. In the 
first limit. 4, + 0 (corresponding to a solid cylinder 

composed of the wall material with no fluid region), 
one correctly obtains cl* + a,. On the other hand, 
for the zero wall-thickness case. ~$r + 1. one finds 
correctly that 5r* -+ 2; by making use of the identity 

I, = I,-2/,1, +rf14. (48) 

As will be seen in the next section, although I,, I, and 
I, may individually depend upon Re*. the constant I, 

does not. 

3.3. Eduation of the constants. The velocity de$cit 

lw, .f’(O 
In order to numerically implement the quadratures 

required in the preceding section, and thereby par- 
ameterize the results of our analysis, the constants 
I, to I, need to be evaluated by first choosing an 
appropriate empirical functional representation of the 
velocity deficit ,f’(<). For turbulent flow in a tube, the 
latter may be written as [8] 

,f’(<) = I-2.5ln(l-<). (49) 

independently of Re*. This leads to the logarithmic 
friction law [S], 

UC, 
= 6+2.5ln Re*. (50) 

1’* 

Equation (49) is based upon scaling arguments 
valid only in the respective domains where the wall 
and core regions overlap. It is, however, invalid near 
the tube center, as well as in the region immediately 

proximate to the wall. In particular. in the viscous 
sublayer immediately adjacent to the wall, the velocity 
actually grows linearly rather than logarithmically 

with <, such that Il CY L’* Rec( I -t). Hence, with USC 
of (50) the velocity deficit thus becomes 

,f’(c) = 6 + 2.5 In Re* - ( 1 - <) Rc* (5- 1) (51) 

near the wall. 
An estimate of the point at which the velocity deficit 

undergoes a transition from linear to logarithmic 
behavior may be obtained by equating (49) with (51). 
With <*. say, the intersection point, this immediately 

gives 

<*=I- 
1 I.0 

Re* 

The viscous sublayer is thus very thin, and decreases 
with increasing Reynolds number. Near the center 

of the tube, a sinusoidal ‘wake function’ has been 
proposed [8]. Jointly, the velocity deficit may thus be 
written as 

1-2.5ln(l-~)-~{sin[7r(~-~)]+l) 

f’(5) = 
(0 d 5 < s’*j. 

6+2SInRe,-(I-5) Re* (53) 

(5* < 5 < I). 

where <* can be determined from (52). 

Use of this velocity deficit function enabled the 
constants I, to I, to be computed for various values 
of Re*, with results shown in Table 2. The constants 
I,, lZ and I,, which appear in the theory for the zero 

wall thickness case, are seen to be insensitive to the 
Reynolds number. On the other hand, the constants 
I,, I, and I, are strong functions of Reynolds number. 

with the viscous sublayer playing an important role 
in determining these constants (even though the com- 
bination of these constants is independent of Reyn- 
olds number, as in (48)). In his original turbulent 
dispersion calculation, Taylor [7] disregarded this vis- 
cous sublaycr contribution. and simply used (49) in 

the wall region. This was a correct assumption as 
shown by the insensitivity of the constants I, to I, to 
details. However. in our case, with allowance for heat 
transport into the tube wall, and consequently non- 
adiabaticity at < = 1. this sublayer region contributes 
importantly to the final result. Indeed, were only equa- 

tion (49) to be used, one would incorrectly conclude 
that I,, I,, I, --t x. at all Reynolds numbers. 

Better physical approximations may be made to the 
velocity deficit, For example. equation (53) shows that 
,f”(<) is finite at the center of the tube, when in reality 
it should be zero. However, since the contribution of 
this region to Cc* is small. no need exists for such 

refinements. 
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Table 2. Evaluation of the constants I, to I,, and their dependence upon Re*. (Although 
I,, I, and I, are unbounded at Re* = CCI, their product as defined by (48) remains 

bounded.) 

102 19 X 10’ 2.259 0.02780 3.971 18.75 36.97 75.32 
IO4 25 X lo4 2.230 0.02782 3.641 24.57 50.08 104.8 
IO” 30 x 10’ 2.227 0.02782 3.613 30.33 62.94 133.6 
IOh 36 x 10h 2.226 0.02782 3.610 36.09 75.77 162.1 

cc rx1 2.226 0.02782 3.610 ic m ‘*: 

The thermal dispersivity for the zero wall-thickness 

case is given by (34). Since I, and I, are approximately 
independent of Reynolds number, we find that 

L?: N 7.27 Pr Re*a,.. (54) 

The turbulent thermal dispersivity ratio for a finite 
wall-thickness is given by (42). For the case of a steel 

tube, specific results for flowing water and air are 
given in Figs. 6 and 7. For the turbulent flow of water 
in a steel tube (fl = 0.94, y = 25.7 and Pr = 7.7), the 
general trend is an increase in Cc* with increasing wall 
thickness. On the other hand, for a steel tube con- 
taining air (/I = 2800, y = 594 and Pr = 0.707), Fig. 
7 shows that the inverse effect is seen, where now Ci* 
decreases with increasing wall thickness. Although a 
bit difficult to ascertain directly from Fig. 7, all curves 

properly approach unity as 4r + 1. (The downturns 
do not occur until 4f > 0.999.) Finally, one should be 
aware of the different scales used in Figs. 6 and 7 ; 
specifically, except near the endpoints, the effective 
thermal dispersivities for the case of water are 
approximately 3-6 orders of magnitude larger than 
those for air. 

FIG. 6. The ratio of effective thermal dispersivities for the 
turbulent flow of water in a steel tube with finite wall thick- 

ness. 
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FIG. 7. The ratio of effective thermal dispersivities for the 
turbulent flow of air in a steel tube with finite wall thickness. 
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